The Group of Symmetries of the Tetrahedron
Ellen Bennett, Dearbhla Fitzpatrick and Megan Tully
MA3343, National University of Ireland, Galway

Introduction

- A regular tetrahedron is a four-sided polygon, having equilateral triangles as faces.
- There are 24 symmetries of a regular tetrahedron, comprised of 12 rotational and 12 reflectional symmetries. In this project we are going to focus specifically on its rotational symmetries.

Identity Element

Rotations about a Single Axis

- There are 4 axes of rotational symmetry, denoted here as A, B, C, and D.
- The rotational axes pass through each vertex and the corresponding midpoint of the opposite face.
- To obtain the first eight elements, one of the four vertices is held fixed and the tetrahedron is rotated by 120 degrees, and then 240 degrees.
- The identity element is the result of a single rotation about any axis of 360 degrees.

[^0]Rotations as Permutations

- The image above depicts the single anti-clockwise rotation through 120 degrees about the axis A. Written as a permutation this is $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 4\end{array}\right)$
- Similarly, the rotation through 240 degrees is $\beta=\left(\begin{array}{lll}1 & 2 & 4 \\ 1 & 4 & 2\end{array}\right)$
- This follows for the rotations about the axes B, C and D, resulting in a total of 8 distinct elements

$$
\begin{aligned}
& \gamma=\left(\begin{array}{l}
123 \\
42 \\
2
\end{array}\right) \\
& \delta=\left(\frac{1}{2} 234\right) \\
& \epsilon=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4
\end{array}\right) \\
& \zeta=\left(\begin{array}{ll}
1 & 2 \\
4 & 3 \\
3 & 3
\end{array}\right) \\
& \eta=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array} \mathbf{L}_{4}\right) \\
& \theta=\left(\begin{array}{ll}
1 & 2 \\
2 & 3 \\
1 & 4
\end{array}\right)
\end{aligned}
$$

Rotations about a Combination of Axes

- There are three distinct elements produced by a composition of a rotation of 240 degrees through a single axis, and a rotation of 120 degrees through a second, different axis.
- For example consider the composition of a rotation through axis A, and a rotation through axis C.

- This composition of rotations can be written as $\lambda=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 1 & 4\end{array}\right)$
- By the same method we also have the two distinct elements:

$$
\rho=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 1
\end{array}\right)
$$

$\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 1\end{array}\right)$

Multiplication Table

	$\underline{\underline{l}}$	$\underline{\alpha}$	β	$\underline{1}$	δ	ε	ζ	$\underline{\underline{n}}$	$\underline{\theta}$	ρ	$\boldsymbol{\lambda}$	$\underline{\underline{\sigma}}$
$\underline{1}$	$\underline{1}$	$\underline{\alpha}$	$\underline{\beta}$	$\underline{1}$	$\underline{\underline{\delta}}$	$\underline{\underline{\varepsilon}}$	3	$\underline{\underline{n}}$	$\underline{\underline{\theta}}$	p	$\underline{\underline{\lambda}}$	$\underline{\underline{\sigma}}$
$\underline{\underline{\alpha}}$	$\underline{\underline{\alpha}}$	β	$\underline{\underline{l}}$	3	p	$\underline{\underline{\theta}}$	$\underline{\underline{\sigma}}$	δ	$\underline{\underline{\lambda}}$	$\underline{\underline{n}}$	$\underline{\underline{\varepsilon}}$	$\underline{\text { V }}$
$\underline{\underline{\beta}}$	$\underline{\beta}$	$\underline{\underline{1}}$	$\underline{\underline{\alpha}}$	$\underline{\underline{\sigma}}$	\underline{n}	$\boldsymbol{\underline { \lambda }}$	$\underline{\underline{Y}}$	$\underline{0}$	$\underline{\underline{\varepsilon}}$	δ	$\underline{\underline{\theta}}$	3
$\underline{\underline{V}}$	$\underline{1}$	$\underline{\underline{\theta}}$	$\underline{\underline{p}}$	δ	$\underline{\underline{l}}$	$\underline{\beta}$	$\underline{\underline{\lambda}}$	3	$\underline{\underline{\sigma}}$	$\underline{\underline{E}}$	\underline{n}	$\underline{\alpha}$
$\underline{\underline{\delta}}$	$\underline{\underline{\delta}}$	$\underline{\underline{\sigma}}$	$\underline{\underline{\varepsilon}}$	$\underline{1}$	$\underline{\underline{V}}$	\underline{p}	\underline{n}	$\underline{\underline{\lambda}}$	$\underline{\underline{\alpha}}$	$\underline{\beta}$	3	$\underline{\underline{\theta}}$
$\underline{\underline{\varepsilon}}$	$\underline{\underline{\varepsilon}}$	ס	$\underline{\underline{\sigma}}$	$\underline{\underline{\theta}}$	$\underline{\underline{\lambda}}$	3	$\underline{\underline{l}}$	$\underline{\beta}$	\underline{p}	$\underline{\underline{V}}$	$\underline{\underline{\alpha}}$	\underline{n}
3	ζ	$\underline{\underline{\lambda}}$	$\underline{\underline{n}}$	p	$\underline{\underline{\alpha}}$	$\underline{1}$	$\underline{\underline{\varepsilon}}$	$\underline{\underline{\sigma}}$	$\underline{\underline{V}}$	$\underline{\underline{\theta}}$	$\underline{\underline{\delta}}$	β
\underline{n}	\underline{n}	3	$\underline{\underline{\lambda}}$	β	$\underline{\underline{\sigma}}$	$\underline{\underline{\delta}}$	$\underline{1}$	$\underline{\underline{\theta}}$	$\underline{1}$	$\underline{\underline{\alpha}}$	$\underline{\underline{Y}}$	ε
$\underline{\underline{\theta}}$	$\underline{\underline{\theta}}$	\underline{p}	\underline{Y}	$\underline{\lambda}$	$\underline{\underline{\varepsilon}}$	$\underline{\underline{\sigma}}$	$\underline{\underline{\alpha}}$	$\underline{1}$	\underline{n}	3	$\underline{\beta}$	δ
$\underline{\underline{p}}$	$\underline{\underline{p}}$	$\underline{\underline{V}}$	$\underline{\underline{\theta}}$	$\underline{\underline{\alpha}}$	ζ	\underline{n}	$\underline{\underline{\delta}}$	$\underline{\underline{\varepsilon}}$	$\underline{\beta}$	$\underline{\underline{l}}$	$\underline{\underline{\sigma}}$	$\underline{\underline{\lambda}}$
$\underline{\underline{\lambda}}$	$\boldsymbol{\underline { \lambda }}$	\underline{n}	ζ	$\underline{\underline{\varepsilon}}$	$\underline{\underline{\theta}}$	$\underline{\underline{V}}$	$\underline{\beta}$	$\underline{\underline{\alpha}}$	δ	$\underline{\underline{\sigma}}$	$\underline{1}$	p
$\underline{\underline{\sigma}}$	$\underline{\underline{\sigma}}$	ε	δ	\underline{n}	$\boldsymbol{\beta}$	$\underline{\underline{\alpha}}$	$\underline{\underline{\theta}}$	\underline{Y}	3	$\underline{\underline{\lambda}}$	م	$\underline{1}$

Isomorphic to S_{4}

- The symmetric group S_{4} is the group of all permutations of length 4. It is of order 4!.
- We have shown that 12 distinct permutations of length 4 are equivalent to the 12 distinct rotations of the tetrahedron.
- Similarly, this can be shown for the 12 distinct orientation-reversing reflections of the tetrahedron.
- If these two subgroups of order 12 are joined to form a subgroup of 24 distinct permutations of length 4 , we can now compare them to the 24 elements of S_{4}, and see that this subgroup must be all of S_{4}.
- Thus we have demonstrated the isomorphic property of the group of symmetries of the tetrahedron to S_{4}

References

Pesek, P. (1966)

The Group of Symmetries of a Regular Tetrahedron. [online] Ojs.library.okstate.edu. Available at: https://ois.library.okstate.edu/osu/index.php/OAS/article/download/4476 [Accessed 25 Nov. 2019].

[^0]: Rotations about axis C.

