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Introduction

• A regular tetrahedron is a four-sided polygon, having equilateral triangles as faces.

• There are 24 symmetries of a regular tetrahedron, comprised of 12 rotational and
12 reflectional symmetries. In this project we are going to focus specifically on its
rotational symmetries.

Identity Element

Rotations about a Single Axis

• There are 4 axes of rotational symmetry, denoted here as A, B, C, and D.

• The rotational axes pass through each vertex and the corresponding midpoint of
the opposite face.

• To obtain the first eight elements, one of the four vertices is held fixed and the
tetrahedron is rotated by 120 degrees, and then 240 degrees.

• The identity element is the result of a single rotation about any axis of 360
degrees.

Rotations about axis A. Rotations about axis B.

Rotations about axis C. Rotations about axis D.

Rotations as Permutations

• The image above depicts the single anti-clockwise rotation through 120 degrees about
the axis A. Written as a permutation this is α= ( 1 2 3 4

1 3 4 2

)
.

• Similarly, the rotation through 240 degrees is β= ( 1 2 3 4
1 4 2 3

)
.

• This follows for the rotations about the axes B, C and D, resulting in a total of 8
distinct elements.

γ= ( 1 2 3 4
4 2 1 3

)
δ= ( 1 2 3 4

3 2 4 1

)
ε= ( 1 2 3 4

2 4 3 1

)
ζ= ( 1 2 3 4

4 1 3 2

)
η= ( 1 2 3 4

3 1 2 4

)
θ= ( 1 2 3 4

2 3 1 4

)
Rotations about a Combination of Axes

• There are three distinct elements produced by a composition of a rotation of
240 degrees through a single axis, and a rotation of 120 degrees through a second,
different axis.

• For example consider the composition of a rotation through axis A, and a rotation
through axis C.

• This composition of rotations can be written as λ= ( 1 2 3 4
2 1 4 3

)
.

• By the same method we also have the two distinct elements:

ρ= ( 1 2 3 4
3 4 1 2

)
σ= ( 1 2 3 4

4 3 2 1

)

Multiplication Table

An element in the left-hand column is performed first, followed by an element in the
top row.

Isomorphic to S4

• The symmetric group S4 is the group of all permutations of length 4. It is of order
4!.

• We have shown that 12 distinct permutations of length 4 are equivalent to the 12
distinct rotations of the tetrahedron.

• Similarly, this can be shown for the 12 distinct orientation-reversing reflections of
the tetrahedron.

• If these two subgroups of order 12 are joined to form a subgroup of 24 distinct
permutations of length 4, we can now compare them to the 24 elements of S4, and
see that this subgroup must be all of S4.

• Thus we have demonstrated the isomorphic property of the group of symmetries
of the tetrahedron to S4.
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