Introduction

- A regular tetrahedron is a four-sided polygon, having equilateral triangles as faces.
- There are 24 symmetries of a regular tetrahedron, comprised of 12 rotational and 12 reflectional symmetries. In this project we are going to focus specifically on its rotational symmetries.

- There are 4 axes of rotational symmetry, denoted here as A, B, C, and D.
- The rotational axes pass through each vertex and the corresponding midpoint of the opposite face.
- To obtain the first eight elements, one of the four vertices is held fixed and the tetrahedron is rotated by 120 degrees, and then 240 degrees.
- The **identity element** is the result of a single rotation about any axis of 360 degrees.

Rotations about axis A

Rotations about axis B.

Rotations about axis C.

Rotations about axis D.

THE GROUP OF SYMMETRIES OF THE TETRAHEDRON

Ellen Bennett, Dearbhla Fitzpatrick and Megan Tully

MA3343, National University of Ireland, Galway

Rotations as Permutations A_{120°} • The image above depicts the single anti-clockwise rotation through 120 degrees about the axis A. Written as a permutation this is $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$. • Similarly, the rotation through 240 degrees is $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$ • This follows for the rotations about the axes B, C and D, resulting in a total of 8 distinct elements. $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$ $\delta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$ $\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$ $\zeta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ $\eta = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{smallmatrix}\right)$

Rotations about a Combination of Axes

 $\theta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$

- There are **three distinct elements** produced by a composition of a rotation of 240 degrees through a single axis, and a rotation of 120 degrees through a second, different axis.
- For example consider the composition of a rotation through axis A, and a rotation through axis C.

- This composition of rotations can be written as $\lambda = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.
- By the same method we also have the two distinct elements:

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Multiplication Table

	ſ	α	ß	¥	δ	3	ζ	ŋ	θ	ρ	λ	σ
L	L	α	β	¥	δ	3	ζ	ŋ	θ	ρ	λ	σ
α	<u>α</u>	β	L	ζ	ρ	θ	σ	δ	λ	ŋ	3	Y
β	ß	L	₫	σ	n	λ	¥	ρ	3	δ	θ	ζ
Y	Y	θ	ρ	δ	L	β	λ	ζ	σ	3	<u>n</u>	<u>α</u>
δ	δ	σ	3	L	¥	ρ	n	λ	<u>α</u>	β	ζ	θ
<u>3</u>	3	δ	σ	θ	λ	ζ	ι	β	ρ	Y	₫	<u>n</u>
ζ	ζ	λ	<u>n</u>	ρ	₫	L	3	σ	¥	θ	δ	β
<u>n</u>	<u>n</u>	ζ	λ	β	σ	δ	ρ	θ	L	<u>α</u>	¥	3
Θ	θ	ρ	Y	λ	3	σ	α	L	<u>n</u>	ζ	β	δ
<u>ρ</u>	ρ	¥	θ	<u>α</u>	ζ	<u>n</u>	δ	3	β	Ŀ	σ	<u>λ</u>
<u>λ</u>	<u>λ</u>	<u>n</u>	ζ	<u>3</u>	θ	¥	β	₫	δ	σ	ľ	<u>p</u>
σ	σ	3	δ	<u>n</u>	β	α	θ	Y	ζ	λ	ρ	L

An element in the left-hand column is performed first, followed by an element in the

top row.

Isomorphic to S_4

- The symmetric group S_4 is the group of all permutations of length 4. It is of order 4!
- We have shown that 12 distinct permutations of length 4 are equivalent to the 12 distinct rotations of the tetrahedron.
- Similarly, this can be shown for the 12 distinct orientation-reversing reflections of the tetrahedron.
- If these two subgroups of order 12 are joined to form a subgroup of 24 distinct permutations of length 4, we can now compare them to the 24 elements of S_4 , and see that this subgroup must be all of S_4 .
- Thus we have demonstrated the isomorphic property of the group of symmetries of the tetrahedron to S_4 .

References

Pesek, P. (1966).

The Group of Symmetries of a Regular Tetrahedron. [online] Ojs.library.okstate.edu. Available at: https://ojs.library.okstate.edu/osu/index.php/OAS/article/download/4476/ [Accessed 25 Nov. 2019].